5 research outputs found

    Four-Group Decodable Space-Time Block Codes

    Full text link
    Two new rate-one full-diversity space-time block codes (STBC) are proposed. They are characterized by the \emph{lowest decoding complexity} among the known rate-one STBC, arising due to the complete separability of the transmitted symbols into four groups for maximum likelihood detection. The first and the second codes are delay-optimal if the number of transmit antennas is a power of 2 and even, respectively. The exact pair-wise error probability is derived to allow for the performance optimization of the two codes. Compared with existing low-decoding complexity STBC, the two new codes offer several advantages such as higher code rate, lower encoding/decoding delay and complexity, lower peak-to-average power ratio, and better performance.Comment: 1 figure. Accepted for publication in IEEE Trans. on Signal Processin

    Quasi-Orthogonal STBC with Minimum Decoding Complexity: Performance Analysis, Optimal Signal Transformations, and Antenna Selection Diversity

    No full text
    Abstract — This letter presents a new method to directly analyze and optimize symbol error rate (SER) performance of minimum decoding complexity (MDC) ABBA space-time block codes based on a tight union bound on SER. Additionally, a new signal transformation for rectangular quadrature amplitude modulation is proposed to provide better performance than the existing ones with lower encoding/decoding complexities. It is also shown that MDC-ABBA codes achieve full-diversity with antenna selection and limited feedback. Keywords: Quasi-orthogonal space-time block codes, ABBA codes, performance analysis. I
    corecore